Health risk assessment of VOCs in air1. Toxicity assessment of VOCs species

> NAKAMURA, Akira JICA Expert

Objective of toxicity assessment

Identify whether:

- Inhalation of VOCs
- at low concentration in ambient air for lifelong period
- cause any significant adverse health effect.

Information Sources

Primary: Study reports:

- Epidemiological study;
- Animal study (tests).

Secondary: Existing assessment reports:

- WHO, OECD, IARC(carcinogen), IPCS,...:
- U.S. EPA(IRIS, ATSDR,...):
- ACGIH(workplace),....

Qualitative assessment What may happen on one who inhaled VOCs? (Adverse health effects)

Detection of odors;
nose and throat irritation;
Wheeze, Asthma;
Damage to respiratory tract (Local effects);
Damage to other organs, nerve system,...(Systemic effects),
up to Cancer, DNA damage, Death.

Quantitative assessment(2) Concentration and Response(2)

Even at low concentration, exposure occurring over an extended period of time may also cause significant effect (Chronicle effect).

Quantitative assessment(4) Dose*-response assessment

*Cumulative inhaled amount, or simply concentration at exposure with fixed manner ("scenario")."

Assess Dose-response relation specific to study, endpoint, and scenario.

NOEL: No Observable Effect Level

NOAEL: No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

*Threshold: the dose (concentration) below which a significant adverse effect is not expected.

Quantitative assessment(7) Dose-response relation

Adverse health effects	Type of relation
-Non-cancer, -Carcinogenic but not cause DNA damage.	With threshold
-Carcinogenic and cause DNA damage.	Without threshold

Quantitative assessment(8) Extrapolation to human doseresponse relation

> Evaluation of data reliability.

Extrapolation from;

- results of animal study at high dose and/or;
- results of epidemiological study, often of worker at high dose, to;

human dose-response relation for general population at low dose.

Quantitative	asse	essment	(9)
Extrapolat	ion	methc	ds

• Simple to state-of-the-art.

Example of simple method: use of uncertainty factor

Animal data to human	1 to 10
Variation with in species (Heterogeneity of population)	1 to 10
Use LO(A)EL, not NO(A)EL	10
Mutigenerational effects	1 to 10
Quality of the data (also called modification factor)	1 to 10

Quantitative assessment(10) Results of the assessment

Effect	damage DNA?	Type of dose- response relation	Result
Non-cancer	NA	With threshold	Extrapolated
Carcinogenic	-		threshold
	+	Without threshold	"Unit risk factor*"

*In this case, the extrapolated excess lifetime cancer risk is expressed in terms of the lifetime average concentration (in μ g/m³) as:

(cancer risk) = (concentration) x (unit risk factor)

